PAE
timecave.validation_strategy_metrics.PAE(estimated_error, test_error)
Compute the Predictive Accuracy Error (PAE).
This function computes the PAE metric. Both the estimated (i.e. validation) error and the test error must be passed as parameters.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
estimated_error |
float | int
|
Validation error. |
required |
test_error |
float | int
|
True (i.e. test) error. |
required |
Returns:
| Type | Description |
|---|---|
float
|
Predictive Accuracy Error. |
See also
APAE: Absolute Predictive Accuracy Error.
RPAE: Relative Predictive Accuracy Error.
RAPAE: Relative Absolute Predictive Accuracy Error.
sMPAE: Symmetric Mean Predictive Accuracy Error.
Notes
The Predictive Accuracy Error is defined as the difference between the estimate of a model's error given by a validation method and the model's true error:
The sign allows one to determine whether the validation method is overestimating or underestimating the model's true error: a negative value denotes an underestimation, while a positive value corresponds to an overestimation.
Note that, in all likelihood, the true error will not be known. It is usually estimated using an independent test set. For more details, please refer to [1].
References
1
Cerqueira, V., Torgo, L., Mozetiˇc, I., 2020. Evaluating time series forecasting models: An empirical study on performance estimation methods. Machine Learning 109, 1997–2028.
Examples:
>>> from timecave.validation_strategy_metrics import PAE
>>> PAE(10, 3)
7
>>> PAE(1, 5)
-4
>>> PAE(8, 8)
0